IP over P2P (IPOP)

White Paper

April 2016

Renato Figueiredo, Youna Jung, Pierre St. Juste, Kyuho Jeong,

Saumitra Aditya
ACIS Lab., University of Florida

http.//ipop-project.org

http://ipop-project.org/

History

DATE AUTHOR DESCRIPTION
0OCT/24/2013 Youna Structuring contents of white paper
NOV/12/2013 Renato, Youna Update on contents
DEC/15/2013 Pierre Revision of current content
DEC/17/2013 Pierre Adding technical details
JAN/12/2014 Pierre Updating section 5
JUN/11/2014 | Renato, Pierre, Youna, | Adding new features and bug fixes

Kyuho, Ken
JUL/18/2014 Renato, Pierre, Youna, | Update content with new features and bug fixes for
Kyuho, Ken IPOP version 14.07.0
AUG/31/2015 Renato Update content with new design features
APR/2016 Renato Update content to reflect 16.01 release

Table of Contents

1. Goals
1.1 Motivation
1.2 Objectives
1.3 Use cases
1) Distributed virtual clusters
2) Mobile computing and social network overlays
2. Background

2.1 Software-Defined Network (SDN)
2.2 Overlay Virtual Networks in Cloud Computing
3. Architecture and Features
3.1 Overall Architecture
3.2 Features
1) Supporting unmodified TCP/IP applications through P2P tunneling
2) Leveraging Social Relationship in I[POP
3) Easy Deployment with Minimum Configuration
4) Leveraging Existing STUN/TURN protocols
5) Supporting different overlay topologies
3.3 Technical Details
1) IPOP-Tap
2) IPOP-TinCan
3) IPOP-Controller
A. SocialVPN controller
B. GroupVPN controller
3.4 Advanced Features
1) Switchmode IPOP
2) Multihop Routing
A. Lookup request/reply
B. Source routing
C. Distributed Routing
3) External services and protocols
A. XMPP (Peer discovery/notification)
B. STUN (Reflection/NAT traversal)
C. TURN (Relay/NAT traversal)
4. Controller/TinCan API
[Function Calls]
4.1 reqgister_svc
4.2 set_local_ip

4.3 get_state
4.4 create link

4.5 set_remote_ip

4.6 trim_link

4.7 set_cb_endpoint

4.8 send_msg

4.9 set_logging

4.10 set_switchmode

4.11 set_translation

4.12 set_trimpolicy

4.13 echo_request

4.14 echo_reply

4.15 set_network_ignore_list
[Notifications]

4.16 local_state

4.17 peer_state

4.18 con_stat

4.19 con_req
4.20 con_resp

1. Goals
1.1 Motivation

In the early days of the Internet, devices were able to directly communicate end-to-end with
each other in an environment where cyber-security threats were uncommon. Much has since
changed, and today the Internet presents an environment where security and privacy concerns
are at the forefront, and where end-to-end connectivity among end users has been hindered by
user mobility, IPv4 address space shortage and the widespread use of Network Address
Translators (NAT) and firewalls.

Nonetheless, with the advent of cloud computing and online social networking (OSN), Internet

users and applications increasingly require the ability to communicate end-to-end among peers
with privacy and integrity (e.g. among personal mobile devices, or among cloud virtual machine
instances deployed over multiple providers). Centralized services that mediate end-to-end user
communication raise major concerns in privacy, fault-tolerance, and performance and are thus
inadequate for many envisioned usage scenarios, for reasons including:

1) Potential Privacy Loss/Leakage- Centralized services such as online social networks
(OSNs) allow users to communicate with their peers; because user-to-user
communication goes through a centralized backend (e.g. Facebook), the service
provider can view and store all interactions (e.g. wall posts, messages, photos, etc)
conducted among social peers. A provider’s privacy policy may change over time; thus
many users worry about data that they would like to be restricted to a group of people
(e.g. their friends) potentially being disclosed to others. In addition to OSN providers,
centralized virtual private network (VPN) providers can also intercept and observe
IP-level communications between peers. In contrast, IPOP follows an approach where
peers communicate privately, end-to-end, effectively thwarting monitoring attempts by a
centralized entity.

2) Performance Limited by Service Providers- In addition to privacy concerns, centralized
services often constrain interactions between peers in order to scale to large numbers of
users through the interfaces (APIs) exposed - for instance, by imposing limits in
bandwidth, file sizes, and the types of interactions (e.g. only certain file types/sizes may
be allowed). In contrast, IPOP follows an approach where peers are not constrained by
any provider APIs or limits in their communication - the API that is exposed by IPOP is
the standard IP network protocol, hence supporting applications that work over IP
networks.

3) Fault tolerance - Centralized services can become unavailable to users due to outages,
cyber-attacks, and government censorship, preventing user-to-user communication -
even if there may be an Internet path between them. In contrast, IPOP supports direct
peer-to-peer communication when there is an Internet path between the users.

In this context, IPOP has been designed to address the following requirements:

1) User-defined and User-friendly Virtual Network Links - Users must be able to define
which devices to link to, using simple-to-use interfaces and leveraging well-adopted
standards. IPOP allows users to establish relationships between devices they wish to
connect using user-friendly social networking interfaces, through an OSN provider of
their choice, or their own private service.

2) Self-configuring Virtual Network Links - Private links must be configured without
exposing users/administrators to the challenges of configuring/exchanging security
credentials, and managing endpoint IP addresses that may be private and change
dynamically due to mobility and NATSs.

3) No Dependence on External Virtual Routing Infrastructure - The virtual network must be
able to encapsulate, tunnel, encrypt, and route packets at the endpoints themselves,
without relying on the deployment of managed virtual routing infrastructure on the
Internet.

1.2 Objectives

The vision for the IPOP project is to provide an open-source platform for user-centric
Software-Defined Network (SDN), allowing end users to define and create their own VPNs
connecting their own resources over the Internet.

The IPOP (IP-over-P2P) system creates an overlay virtual network supporting the vision that
future Internet applications will increasingly demand direct, secure end-to-end P2P
communication among devices. IPOP creates P2P links among endpoints, which can be mobile
and/or NATed; provides virtual private IP messaging tunneled through P2P links as a core
service; and enables the creation of peer-to-peer virtual private networks (P2P VPNSs) of various
topologies. IPOP also supports tunneling of Layer-2 Ethernet frames, in its recently introduced
“switch mode” operation. Thus, IPOP can be configured to work as either a Layer-2 or Layer-3
overlay virtual network.

A key objective is to deliver the benefits of privacy, authentication and integrity in end-to-end
communications to a wide range of users - including individuals, users/administrators
aggregating resources across cloud infrastructures, and researchers studying next-generation
cloud middleware. To accomplish this objective, IPOP requires no networking infrastructure
deployment beyond endpoint resources, leverages user-friendly interfaces for configuration, and
uses virtualization, supporting standard Internet protocols and existing applications.

Another objective of the project is to be community-driven and encourage contributions from
developers. We use the liberal MIT license; the software development process follows

open-source best practices, and the system has been designed in a modular fashion and
incorporates standards and third-party OSS implementations to the extent possible, and is
designed to run on a variety of platforms, including embedded systems, mobile devices,
personal computers, and cloud servers.

The resulting system is an overlay where every participating device has links to “social peers”
(e.g. devices owned by friends in an online social network, or cloud-hosted computers that join a
virtual cluster) and virtualization enables peers to communicate using IPv4/IPv6 standards, thus
supporting existing, unmodified applications and allowing new applications to be developed
using well-understood, widely-adopted Berkeley sockets interface. IPOP accomplishes this by
implementing the core functionality of tunneling IP packets (or Ethernet frames, in switch-mode)
over peer-to-peer “TinCan” links and exposing a flexible API to control the setup and
management of TinCan links to create various software-defined VPN overlays.

To address the requirements listed above, IPOP provides the following functionalities:

1) IPOP allows users to define relationships through easy-to-use OSN interfaces. These
relationships can be among individual users, as well as group-oriented, supporting use
cases including user-facing devices and friend-to-friend communication, as well as cloud
servers connected as logical groups to form virtual clusters. They can be inherited from
existing OSNs, or established in private/custom OSNs, and managed dynamically.

2) IPOP automatically maps OSN relationships to configure and manage virtual network
links. This includes the generation and exchange of security credentials, setup of
peer-to-peer links, virtual IP addresses, and overlay routing across multiple links.

3) IPOP allows each endpoint device to not only pick and inject packets, but also provides
a framework for overlay routing across multiple links. To bootstrap itself, IPOP leverages
external infrastructure/services to set up links - using standard protocols for
messaging/notification (XMPP) and assistance in NAT traversal (STUN, TURN). Once
links are established, IP-over-P2P messaging does not depend on the external
infrastructure - it is done in a peer-to-peer fashion.

1.3 Use cases

There are several use cases for which IPOP provides useful features, as illustrated in the
following examples. These examples highlight scenarios that use two of the IPOP “controllers”
that have been developed thus far - SocialVPN and GroupVPN. The functionality of these
IPOP controllers is described in detail later in the white paper, but it is important to introduce
their main characteristics at this point: in SocialVPN, each individual user, on his or her own, is
able to determine which other individual users they wish to connect to by a VPN. In GroupVPN,
instead of individual user-to-user relationships, a group relationship is established: each user in
the group is able to communicate to all other users in the group, without having created a
friendship link to other users. For instance, let us consider Facebook as a representative OSN
to highlight differences between these two use cases. In SocialVPN, an individual user would
only communicate with the Facebook friends they have explicitly accepted to join their social

network. In GroupVPN, instead, a user with the role of group leader would create a Facebook
group and invite users to join; any user who joins the group would automatically be able to
communicate with all other users who also joined the group - even though they may not be
Facebook friends to each other. In essence, in GroupVPN, users delegate the establishment of
trust to the group leader, whereas in SocialVPN, each user is in control of who they trust.

1) Distributed virtual clusters

Cloud users are becoming increasingly wary of vendor lock-in and expect the ability to
painlessly move their workloads across cloud providers. Several projects are designed with
multi-cloud deployment as a fundamental tenet. A motivation for IPOP is to facilitate such
cross-cloud mobility by providing a virtual networking technology that requires little configuration
and infrastructure.

For example, Alice runs a multi-tier web service consisting of a front-end server, application
servers, and a database on a single cloud provider. For enhanced network security, Alice only
assigns a public IP address to the front-facing web server and runs the application servers and
database in a NAT-ted virtual network in the cloud. Alice then decides to move some of the
application servers to a different cloud provider and restricts their Internet exposure with a
similar NAT-ted network environment. Without IPOP, Alice needs to update all of the
configuration files pointing to the application servers and is required to create port

forwarding rules on the NATSs at each cloud provider. She also has to ensure that all traffic
between the front-end server and the application servers is encrypted because the VMs would
be communicating over the open Internet.

Alice could potentially also use emerging SDN or overlay networking techniques to enable this
cross-cloud migration; however, such solutions require networking expertise along with
additional resources such as virtual switches/routers.

Instead, IPOP’s GroupVPN can be used as the networking fabric to create virtual machine
clusters deployed across multiple cloud providers (private and commercial) - without requiring
any special support from the cloud providers, only the ability to run VMs. This allows software
that runs on clusters (e.g. job schedulers, multi-tier Web frameworks) to seamlessly run across
cloud providers, enabling greater flexibility in the management of workloads and costs by
reducing concerns about vendor lock-in.

By running IPOP’s GroupVPN in her virtual machines, Alice is able to maintain their private IP
addresses because TinCan links are automatically re-created upon migration, even if the VM is
behind a different NAT. IPOP node identifiers are preserved, and virtual IP addresses are
decoupled from the physical infrastructure IP addresses.

IPOP’s “switchmode” allows it to work as a layer-2 virtual network, processing Ethernet frames
and handling broadcast requests. This is important in deployments that use protocols other than
IP-based, and also enables applications to bypass the IPOP overhead on LAN communications.

2) Mobile computing and social network overlays

In the case of mobile computing, it is typically the case that a mobile user needs to
communicate with trusted nodes to share either personal information (e.g. check-in at a
restaurant), media (e.g. photos or videos), or computation (e.g. volunteer computing for mobile).
For instance, many smartphones run a media server which facilitates media sharing with other
devices in the same LAN.

IPOP’s SocialVPN creates a virtual LAN which makes it possible to extend this media sharing
capability with social peers regardless of their location. As another example, through the VPN,
users can make direct mobile SIP-based calls over the Internet using mobile softphone apps

such as CSipSimple, thus enabling encrypted calls that are not logged by a centralized server.

With IPOP’s SocialVPN, trusted peers are mapped to a virtual private IP address which is
preserved as the mobile devices move across different networks (e.g from/to WiFi to 3G/4G).
IPOP also supports IP multicast on within the virtual network; therefore LAN network discovery
protocols such as UPnP and MDNS work out of the box.

IPOP’s SocialVPN can be used as the communications layer to enable users to collaborate,
share directly with friends over private end-to-end network links. This allows social peers to
bypass the need to communicate through an online social network provider for privacy-sensitive
or low-latency/high-bandwidth applications, while still benefitting from the ability to discover and
establish friendships through an OSN provider.

2. Background

2.1 Software-Defined Network (SDN)

Recent developments in software-defined networking (SDN) have enabled unprecedented
flexibility in the provisioning of elastic cloud services by data center providers. In SDN-enabled
technologies, a user (typically a network administrator) is given the ability to program the
behavior of network fabric (typically switches and routers) through a standard, programmatic
interface (e.g. OpenFlow).

Yet, several use case scenarios require users to deploy virtual networks that span across
multiple cloud providers, mobile device endpoints, and are subject to device mobility and VM
migration. In these scenarios, prevailing SDN techniques are challenging to deploy, because no
single entity has the capability to program SDN devices end-to-end - for instance, mobile
Internet users Alice, Bob and Carol may wish to create a software-defined network connecting
their devices together but do not have the authority to configure any networking equipment other
than their own devices.

The techniques currently available for typical “data center SDN” technologies do not apply in a
straightforward way when the endpoints are personal devices managed by multiple end users
and connected by the public Internet. In contrast, IPOP enables setup and management of
private end-to-end tunnel links allowing virtual networks over shared infrastructure. It reuses
existing standards and implementations of services for discovery and notification (XMPP),
reflection (STUN) and relaying (TURN), facilitating configuration with an approach where trust
relationships maintained by centralized (or federated) services are automatically mapped to
end-to-end overlay links.

2.2 Overlay Virtual Networks in Cloud Computing

Over the past few years, major laaS cloud providers have introduced network virtualization
capabilities allowing users to create their own isolated virtual network and define IP address
ranges and subnets on the cloud.

laaS vendors, such as Amazon EC2,Windows Azure, and Google Cloud Engine, also enable
additional features such as specifying DHCP and DNS setting for the private network. Moreover,
users can define routing rules and network access control for the network and IPSec VPN
gateways which make it possible to combine multiple different subnets from private or public
clouds.

It is clear that the cloud computing industry understands that network virtualization is a crucial
component for cloud provisioning; however, there is no open standard for interoperability, thus
placing the entire burden on users desiring cross-cloud deployments.

To address challenges in network virtualization across different clouds, various third-party
commercial solutions have emerged. VMware NSX is a network virtualization technology that
runs at the hypervisor level, recreates the whole network in software at both layers 2 and 3, and
also supports Xen and KVM. It uses a virtual switch in the hypervisor to connect to other virtual
switches, virtual bridges or virtual routers, while only requiring an IP backplane for connectivity.
It also supports virtual networking across different data centers since the virtual networking
components connect over IP. However, this solution is difficult to support across multiple
providers, as it requires privileged access to the hypervisor.

Both VNS3 and RightScale's Cloud Management products lets users provision virtual machines
in the same virtual private network across different public cloud providers through a common
interface. VNS3 runs a virtual appliance manager at each cloud provider and implements a
virtual switch/router, and a VPN gateway in the appliance; hence, VNS3 is not dependent on the
underlying cloud provider's virtual networking technology because it re-implements its own in
the cloud on top of the IP backplane. RightScale provides a unified wrapper around the virtual
networking API of various cloud providers and greatly simplifying the deployment of virtual
networks spanning multiple public clouds. However, these third-party solutions require
additional resources to configure and manage these networks, again placing a significant

burden of configuration and management on end users. While this burden may be acceptable in
environments where dedicated staff is employed to manage the virtual network components, it
becomes a significant barrier for small/medium-scale deployments - a typical use case of
clouds. IPOP targets the needs of users who are not willing to afford the configuration and
management of additional virtual network infrastructure.

Academic and industry research have also explored applicable solutions for cross-cloud virtual
networking. Researchers at IBM have developed VirtualWire, which implements a layer 2 virtual
network tailored to deployment of legacy applications and VM migration across clouds.
Virtualwire is a hypervisor-level virtual network integrated with the Xen-Blanket nested
virtualization technology, enabling VM migration across public clouds. VIOLIN uses a very
similar approach to Virtualwire providing layer 2 communication with networking components
such as switches and routers implemented purely in software. A drawback with these
approaches is that users are still required to configure virtual switches, routers, and deploy their
own DHCP and DNS servers within the virtual network.

Another solution is CloudNet which advocates MPLS-based VPNs to bridge virtual networks
and provide layer 2 connectivity across different cloud providers. However, this approach
requires public cloud vendors to expose compatible MPLS-based VPN gateways and layer 2
access to their networking virtualization technologies. Major public cloud providers do not
support layer 2 connectivity.

VNET also provides layer 2 connectivity across private clouds and it is implemented at the
hypervisor level. This is accomplished through a layer 2 proxy that bridges the two networks
but this approach would not work on public clouds since access to the hypervisor and layer-2
networking is unavailable to users.

All of these previous works do not explicitly deal with NATs and firewalls, and assume the
availability of VPN gateways and virtual routers with public IP addresses. As cloud usage
increases, the pool of IPv4 addresses become more scarce --- compounded by recursive
virtualization and the use of containers --- establishing end-to-end virtual network links across
NAT-constrained devices becomes increasingly important.

VINE is a layer 3 virtual networking alternative which supports NAT/firewall traversal through
relaying. However, it requires users to manage and configure the virtual routers if an application
server is migrated across clouds, and does not provide NAT-traversed end-to-end tunnels that
bypass a relay/router node.

OpenVPN is a solution that is applicable in both cross-cloud VPN environments and mobile
virtual networking. However, OpenVPN follows a client/server architecture where all IP traffic

is routed through a central gateway. This incurs high latency and creates a resource bottleneck.

Many other solutions improve on the OpenVPN model; for instance, Hamachi uses a proprietary

central server to setup P2P connections between hosts, even through NATs and firewalls. IP
traffic is tunneled over these encrypted P2P connections.

Other approach such as Tinc, Vtun, and N2N all create mesh VPNs where nodes create direct
connections to each other, but they require nodes to be openly accessible over the Internet.
While these solutions can potentially be used to enable cross-cloud virtual networking, they are
not currently supported by mobile platforms, and do not provide a flexible overlay architecture
that supports other VPN topologies, such as those implied by friend-to-friend social network
graphs.

3. Architecture and Features

3.1 Overall Architecture
From a developer’s perspective, IPOP consists of three major modules depicted in Figure 3.1:

Peer discovery,
notification
VPN controller @
4 Controller
XMPP
TinCan API
Application JSON/UDP
- Reflection
Socket 5 Packet Link | STUN .\ server
ocket - c [
APl API el etup NAT traversal

| Thread Thread |
Relay
\\\ IPOP-TInCan TuRN \server

Tap ioctl() T
R
API Send ey E

| VNIC (tap) | | PNIC (eth) f IPOP-Tap

Figure 3.1: Major IPOP modules: IPOP-Tap, IPOP-TinCan, and Controller

IPOP-Tap: this is the module that interfaces with a virtual network interface (VNIC) to be able to
pick/inject IP packets from/to the virtual network. It is responsible for maintaining send/receive
queues, and using the system call interface of the O/S (e.g. Unix ioctl()) to configure and
read/write from a virtual network interface (tap device). It also handles the encapsulation of an
IP packet by adding the required IPOP headers for routing over the P2P links.

IPOP-TinCan: this is the module that handles links between pairs of IPOP nodes. Specifically, it

manages each “TinCan” link that a node has. A “TinCan” link is a private end-to-end connection
between two peers through which the virtual network’s IP traffic is tunneled. IPOP-TInCan
handles the setup/tear-down of each link (link setup thread), and the sending/receiving of
tunneled IP packets over these links (packet handling thread). The link setup thread uses
external services through the XMPP protocol to discover and notify peers for which TinCan links
are to be formed, and STUN/TURN protocols to establish links between nodes that are
constrained by NATs (Network Address Translators). It also exposes a management API to the
controller module. The packet handling thread uses the IPOP-tap module to interact with the
virtual network, and the Berkeley sockets API to send/receive tunneled packets through the
physical Internet.

Controller: this module is responsible for configuring and controlling the setup and
management of a collection of IPOP-TinCan links to form overlays, using the API exposed by
the IPOP-TinCan module. The controller is responsible for establishing the policies for topology
creation of an IPOP overlay (e.g. on-demand topology in GroupVPN, or social graph topology
and multi-hop routing in SocialVPN), and determining when links are created/destroyed (e.g.
when a peer node’s presence is detected, or on-demand triggered by IP traffic), using the
IPOP-TinCan mechanisms exposed by its API to implement the policies.

3.2 Features

1) Supporting unmodified TCP/IP applications through P2P tunneling

It helps to understand the architecture and the functionality of the major modules of IPOP by
looking at the system from different perspectives. Starting from the perspective of applications
(Figure 3.2), the most important benefit of network virtualization in IPOP is that it supports
existing, unmodified applications. From the application’s perspective, IPOP creates a virtual
private network supporting existing socket APls exposed by the O/S through a virtual network
interface (VNIC) and end-to-end tunneling, such that existing applications (IPv4 or IPv6 based)
can execute without requiring modifications, and new applications can be deployed using
well-known Berkeley socket APls. For performance reasons, IP tunneling in IPOP typically takes
place across a single TinCan link, but multi-hop routing over several TinCan links is also
supported in the architecture

Socket API

IPOP

e A - IJ) Sy Wy

PNIC (eth) | | UNIC (tap),

PNIC (eth)

VNIC-(tap)
177.16.10.10

172.16.10.20-,

Figure 3.2: IPOP exposes a virtual network to applications, thereby supporting the standard Internet IP
protocol and existing, unmodified applications

2) Leveraging Social Relationships in IPOP

In order for IPOP to provide the virtual network’s perspective illustrated above, it is necessary
for users to establish who they want to link with in their virtual network, and to configure and
deploy IPOP software on their devices. Figure 3.3 illustrates the process for users to establish
relationships, and how IPOP utilizes XMPP messages to establish TinCan links.

Authenticate and
Establish relationships

Join Carol’s group

>

David

Befriend
Bob

Web browser
XMPP client

Befriend

A Create Carol’s grou
Alice group

Figure 3.3: User establish relationships to create point-to-point links to other users, or establish

groups, through an online social network (OSN) supporting the XMPP protocol.

In order to configure IPOP virtual networks, the user needs to determine which users they wish
to connect to. This is done through an online social network interface - independently from using
IPOP. In the typical case, a user creates/authenticates to an account in an online social network
(OSN) server; this could be a public service (e.g. Google hangout), or a private service (e.g. a
private ejabberd server), through a Web interface or XMPP client (e.g. Pidgin). The user
establishes relationships with other users they wish to connect to through the OSN (e.g. with
friend requests). These can be peer-to-peer (e.g. in IPOP’s SocialVPN), or based on groups
(e.g. in IPOP’s GroupVPN). Currently, IPOP supports the XMPP protocol to query OSN
relationships, and to send messages to online peers.

3) Easy Deployment with Minimum Configuration

The IPOP software typically runs on a user’s personal computer, or on virtual machines
deployed on cloud resources. Once peer relationships are established through an OSN server,
a local configuration file at each IPOP endpoint points to the OSN server, and the user (or
system administrator) simply executes the IPOP software on the resources that are to be
connected to the virtual network (Figure 3.4). IPOP then automatically installs and configures
the local VNIC, and automatically creates end-to-end tunnels connecting to VNICs of peers
determined by the OSN.

Discover
Discover Online
Online peers

peers

Config. Execute IPOP
File

&)

IPOP

Internet

\
PNIC (eth) | | VNIC (tap) |

| UNIC (tap) | | PNIC (eth)

Figure 3.4: A user or system administrator provides a configuration file determining, among other
parameters, which OSN server to connect to; upon running IPOP, TinCan links are autonomously created to
tunnel IP traffic with end-to-end privacy and integrity.

4) Leveraging Existing STUN/TURN protocols

One of the key aspects of IPOP that enables it to transparently tunnel traffic between endpoint
devices is its ability to traverse NATs. This is of key importance as IPv4 address space
exhaustion, and desire for private address spaces as a line-of-defense against attacks have
contributed to the proliferation of NAT devices in personal and enterprise networks. NATs
complicate the process of creating end-to-end VPN tunnels, as resources behind distinct NATs
are not directly addressable by each other.

IPOP leverages the libjingle library to perform NAT traversal in two major ways (Figure 3.5):
IPOP leverages STUN/TURN protocols to discover their NAT endpoints and create tunnels
directly with peers, if possible (“cone-type” NATS), or through an intermediary relay on the public
Internet when more restrictive NATs prevent direct tunnels (“symmetric” NATs). The selection of
a tunneling approach is managed dynamically by IPOP, and tunnels are completely transparent
to applications.

Discover
Network
Endpoint

O
VNIC (tap) PNIC\(VeEh) "

Flgure 3.5: IPOP supports the creation of direct TinCan links between endpoints for most deployed “cone”
NATSs. Peers use one (possibly out of many) STUN servers to discover their endpoints on the public
network, and exchange endpoint information using XMPP. For certain restrictive “symmetric” NATs, IPOP
uses TURN and relay servers to route through an intermediary node on the public Internet.

PNIC (eth)

5) Supporting different overlay topologies

The discussion of the architecture thus far has focused on establishing single links between
peers that wish to communicate. This is the common-case scenario in IPOP, as the goal is to
connect peers that wish to communicate directly to each other, over a fast path. Thus, IPOP
preferentially creates TinCan links that leverage the underlying Internet path between the two

https://developers.google.com/talk/libjingle/

endpoints. However, it is possible that the direct Internet path between two endpoints cannot be
used (e.g. because of restrictive NATs), or because of resource capacity or performance
reasons (i.e. a node may be limited in terms of how many concurrent links it can maintain).
Therefore, IPOP supports a framework upon which multi-hop overlay routing can be performed
over TinCan links. This is illustrated in Figure 3.6.

255 °LE %S

Structured P2P Topology All-to-all Topology Social P2P Topology
Controller B
Controller A
IPOP IPOP
IPOP Tunnel IPOP Tunnel bop
gvir A-I? c J/ I Over B-C]
send to B \ intan fin, TinCan link_ =
end to B, ~ I
Destination C —

Forward to C

Flgure 3.6: IPOP enables different controllers to implement different overlay topology maintenance and
routing for different usage scenarios. Each controller binds to an IPv6 VNIC with a unique address in the
overlay, allowing identifier-based routing through multiple intermediaries. Neighboring controllers can
communicate using transports layered upon IPv6, thereby facilitating the programming of
controller-controller protocols.

The key insight is that IPOP does not prescribe a particular overlay topology (and associated
routing); these are left to the implementation of controllers, reflecting the fact that different uses
of IPOP may be best served by different topologies. For instance, for a small-sized virtual
cluster (few to tens of nodes), an all-to-all topology with direct connections among each pair of
peers offers good performance and fault tolerance with very simple topology maintenance and
routing; however, it does not scale to large numbers of nodes. A structured P2P topology can
scale to much larger numbers, but requires more complex maintenance and routing. An
unstructured social network graph topology scales well, is resistant to Sybil attacks, and
provides good connectivity among friends and friends-of-friends; however, routing across users
who are distant in the graph is difficult because a path must be first discovered.

Because different use cases can be best served by different topologies and routing policies,
IPOP provides core mechanisms and abstraction layers upon which controllers can be
designed. The controller module in IPOP is thus responsible for implementing the policies that
control topology creation and management. To support overlay routing, the IPOP controller
framework provides core primitives for Inter-Controller Communication (ICC) for forwarding
messages between neighboring controllers through TinCan links.

Specifically, the IPOP-TinCan module has a local forwarding table and is capable of resolving a
virtual IP address to a unique node identifier (UID). If a packet is destined to a neighbor at the
other side of a TinCan link, IPOP-TinCan simply forwards the packet along the link, without the
involvement of the controller. However, if the destination is not reachable directly by a TinCan
link, the IPOP-TinCan module forwards the packet to its local Controller module for overlay
routing. Controllers use this primitive to initiate overlay routing; controllers can do so by using
the ICC primitive to communicate with a neighboring controller (over a TinCan link) to forward a
packet, and to uniquely identify the destination. It is also possible for applications to create their
own application-layer overlay routing by using the basic mechanism of forwarding to neighbors
over a TinCan link.

3.3 Technical Details

1) IPOP-Tap

This component deals directly with the operating system by configuring the virtual network
interface (VNIC) with an IP address and netmask specified by the controller. Currently, this is
done using the ioctl() system call on Linux-based systems such as Ubuntu/Debian, Android, and
OpenWRT. For Windows, this configuration is done using the netsh command. This module also
maintains the file descriptor used to read and write Ethernet frames to/from the VNIC. The VNIC
is created through the use of the kernel tap module available for both Linux and Windows.

IPOP-Tap operates with two separate threads which perform IP packet encapsulation on all
outbound packets and optionally perform IP translation on inbound packets (e.g. for SocialVPN).
In the Layer-2 “switch mode”, Ethernet frames (rather than IP packets) picked from the tap
device are encapsulated. In the sending thread, IPOP-Tap encapsulates every outbound IP
packet (or Ethernet frame, in switch mode) read from the VNIC by prepending a 40-byte IPOP
header. This header consists of a 20-byte source UID followed by another 20-byte destination
UID. The source UID is the UID of the local node, and the destination UID is determined by
using the destination address in the IP header (or Ethernet frame, in switch mode) to look up the
corresponding UID from the peerlist table, which maps peer UIDs to IPv4 addresses. After
performing the encapsulation, IPOP-Tap adds the packet to the outgoing queue for processing
by the upper layer (i.e. IPOP-Tincan).

In the receiving thread, in the Layer-3 mode of operation, IPOP-Tap optionally performs packet
translation upon reading an inbound IP packet from the incoming queue connected to the upper
layer. The IPOP header of the received packet is examined and the source and destination
UIDs are used to update the IP header of the packet - since each peer may maintain their own
different UID-to-IP mappings (e.g. in SocialVPN), inbound packets need to have their IP header
updated to ensure consistency with the local peerlist. Hence, for every inbound packet, the
destination IP address is set to the local node’s IP address, and the source IP address is set by
looking up the corresponding IP address mapped to the destination UID in the IPOP header.
After the IP header has been translated, the destination MAC address of the Ethernet frame is
updated with the local VNIC’s MAC address to guarantee that the operating system accepts the
packet. The IPOP header is then removed and an Ethernet frame (including the IP packet as
the payload) is sent to the VNIC via the tap kernel module’s file descriptor. In switch mode of
operation, MAC addresses are not translated.

IPOP-Tap exposes the following API allowing the IPOP-Tincan module to configure the VPN:

1. tap_set ipv4 addr(const char* ip4_str, int ip4 _mask): this function sets the IPv4 address
and netmask of the VNIC in the local system (e.g. 16 means w.x.y.z/16)

2. tap_set ipv6_addr(const char* ip6_str, int ip6_mask): this function sets the IPv6 address
and netmask of the VNIC in the local system (e.g. 16 means w.x.y.z/16)

3. peerlist set local p(const char® uid str, const char* ip4 str, const char* ip6_str): this
function sets the local IPv4/IPv6 addresses for the local user. This is needed for IP
encapsulation and translation.

4. peerlist add p(const char* uid str, const char* ip4 str, const char* ip6 _str): this function
sets the local IPv4/IPv6 addresses for a remote user. This information is stored in the
peerlist table and is used for IP encapsulation and translation.

5. set_subnet_mask(int subnet_mask): this function sets the subnet mask for the router
mode in GroupVPN (the router mode in GroupVPN allows a device (e.g. an OpenWRT
wireless router) to run GroupVPN and route for all devices within a LAN). It is set to 32
when routing for one node, 31 for two nodes, 24 for 255 nodes, and so on.

2) IPOP-TinCan

This module does the heavy lifting necessary to enable direct, encrypted P2P connections
among peers. It relies on the libjingle library for three main capabilities: XMPP support, P2P
connection establishment, and OpenSSL-based socket encryption. The first crucial task
performed by this module is the establishment of a TLS connection with an XMPP provider (e.g.
Google Hangout, Jabber.org, or a private ejabberd server). IPOP-Tincan also creates an X.509
certificate every time the process is started. It then uses the XMPP service as a trusted,
out-of-band overlay to share the local peer’s X.509 fingerprint with other trusted peers along

https://github.com/ipop-project/ipop-tap/blob/69434bc428918ea8111823078fc7d7ed6eeb6341/src/tap.c#L234
https://github.com/ipop-project/ipop-tap/blob/69434bc428918ea8111823078fc7d7ed6eeb6341/src/tap.c#L272
https://github.com/ipop-project/ipop-tap/blob/69434bc428918ea8111823078fc7d7ed6eeb6341/src/peerlist.c#L154
https://github.com/ipop-project/ipop-tap/blob/69434bc428918ea8111823078fc7d7ed6eeb6341/src/peerlist.c#L282
https://github.com/ipop-project/ipop-tap/blob/69434bc428918ea8111823078fc7d7ed6eeb6341/src/peerlist.c#L460

with Interactive Connection Establishment (ICE) protocol information necessary to bootstrap a
secure P2P connection. Using the XMPP roster (or buddylist) feature, IPOP-Tincan is able to

discover online friends and send connection requests/replies to each other. IPOP-Tincan also
manages the connections to online friends.

Each friend possesses a unique identifier (UID, a 20-Byte long identifier) and each P2P
connection is mapped to a peer’s UID. IPOP-Tincan uses the UID of each peer for forwarding IP
packets (or Ethernet frames) to the appropriate P2P connection. Our current design uses two
blocking queues (an outgoing queue and an incoming queue) to move packets between the
IPOP-Tap and IPOP-Tincan modules. As described earlier, IPOP-Tap reads an Ethernet frame
from the VNIC, encapsulates it with a 40-byte IPOP header, and puts it in the outgoing queue.
IPOP-Tincan pulls the encapsulated packets from the outgoing queue and uses the destination
UID in the IPOP header to look up the corresponding P2P connection for that UID. If a P2P
connection for that UID exists, the encapsulated packet is sent over that connection; otherwise,
the packet is sent “up” to the IPOP-Controller for processing - e.g. for overlay routing.

In switch-mode, IPOP-TinCan forwards broadcast Ethernet packets to all links. Currently, as of
release 16.01, IPOP switch-mode requires an all-to-all topology to support broadcasts. A
scalable approach based on overlay multicasts is under development for a future release.

When a UID is matched and a packet is sent over a TinCan P2P connection, the IPOP-Tincan
module on the receiving end calls its incoming packet handling function, which reads the
destination UID from the IPOP header to verify that it matches the local node’s UID. If the UIDs
match, then IPOP-Tincan puts the received packet in the inbound queue for processing by
IPOP-Tap. IPOP-Tap will in turn get the incoming packet, perform IP translation on the IP
header, update the MAC address and write the Ethernet frame to the VNIC. IPOP-Tincan
performs all of this processing in its packet handling thread.

IPOP-Tincan performs two additional functions in a separate link setup thread. First, it handles
all messages coming from the XMPP service and sends them to the IPOP-Controller for
processing. Second, it listens on a UDP socket for incoming JSON RPC requests from the
IPOP-Controller. For example, when a node connects to the XMPP service, it announces itself
to every social peer in its XMPP roster (or buddylist). IPOP-Tincan receives these notifications
and sends them to the IPOP-Controller. The controller receives these notifications and decides
the appropriate action based on its policies (e.g. connection creation, or user notification).
IPOP-TinCan exposes a JSON-based API that allows a controller various capabilities including:
creation and deletion a P2P connection, registration with an XMPP service, and messaging to
XMPP. The IPOP-Tincan API also exposes the IPOP-Tap functions which allows for the
configuration of the local network, and assignment of UID-to-IP mappings. IPOP-TinCan also
sends various notifications to the controller as well including node joins, dead link detection, and
XMPP login errors. Section 4 describes the TinCan API in more detail.

http://tools.ietf.org/html/rfc5245

3) IPOP-Controller

The IPOP-Controller is the most extensible portion of the design. It uses the TinCan API
(described in Section 4) to control various aspects of IPOP-TinCan’s behavior. The controller
implements various policies such as criteria for link creation, limit on the number of connections,
network configuration settings, IP allocation scheme, and link deletion parameters. Also, the
controller can be written in a scripting language - such as Python - which enables fast
prototyping of different policies and functional/performance isolation from the IPOP routing core.

IPOP-TinCan also sends packets with destination UIDs that not mapped to a P2P connection
“up” to the controller for processing. This is a key feature that enables overlay routing through
the controller when a direct TinCan link to the destination UID is not available. Upon receiving
the encapsulated IP packet, the controller may take various actions: typically, either trigger the
creation of a new TinCan link to the destination UID, or forward the packet to another controller
for overlay routing. Since IPOP-Controllers can also forward messages to each other over IPOP
connections, they can implement distributed policies by coordinating among themselves. For
instance, it is possible to implement a policy that allows them to arrange themselves as a
structured overlay network or a DHT. Since controllers can use the ICC primitive to
communicate with “neighbor” controllers, as well as use XMPP messages to send notifications
to other controllers, they have the flexibility to determine the most efficient organization for a
given deployment scenario. A line-by-line breakdown of a very simple “template” controller is
described in Section 5.

Since release 16.01, the IPOP controller has been designed with an event-driven framework
that provides increased flexibility in the design of modules that implement different core

functionality. It is composed of the following major subsystems:

Controller Framework (CFx)

The Controller Framework performs various tasks associated with loading, maintaining and
coordinating the execution of the controller modules. The responsibilities of the CFx are:

- Initializing the controller (Creating sockets, making initializing TinCan API calls, etc.)
- Dynamically load the controller modules

- Maintain the DB of registered modules

- Ensuring cross controller configuration and version compatibility

- Enforce Inter-CM (Controller Modules) dependencies

- Facilitate Inter Modular communication

Controller Modules (CMs)

Each controller module is a component of the controller that implements and performs a
well-defined core functionality of the controller. Examples of CMs:

- AddressMapper

- LinkManager

- TincanListener

- BaseTopologyManager
- Monitor

- Logger

- Watchdog

CFxHandle

CFxHandle is basically an interface between the CFx and CMs. CMs cannot directly
communicate with the CFx. They can do so via the CFxHandle. The CFx exposes some
functions to the CFxHandle, and CFxHandle exposes some functions to the CMs. The CFx
creates a CFxHandle for every CM.

Details on the design and APls used by the IPOP controller framework are maintained in the
project’'s Wiki: https://github.com/ipop-project/ipop-project.github.io/wiki/Controller-Framework

Currently, IPOP implements two different controllers: SocialVPN and GroupVPN.

A. SocialVPN controller

The SocialVPN controller creates TinCan links between social peers in a manner where each
user has their own view of the network - i.e. with SocialVPN, a user Alice’s devices link to all of
her devices and to all devices of friends she has explicitly added to her social network. Alice’s
SocialVPN does not have TinCan links to any device that does not belong to herself or a friend.
Because social networks have very large numbers of users, and IPv4 private address spaces
are limited in size, SocialVPN implements an address translation mechanism whereby each
user has a local virtual private subnet (e.g. 172.16.10.0/24) and maps all their friends onto this
subnet. IPv4 addresses are automatically mapped (just addresses - ports are not mapped) by
IPOP-TinCan. SocialVPN also supports private IPv6 addresses; because of the larger 128-bit
address space, these can be considered unique with very high likelihood, and not translated.

B. GroupVPN controller

The GroupVPN controller creates TinCan links among nodes in a manner that all devices
belonging to a GroupVPN can connect to each other. In GroupVPN, rather than having each
user determine independently who to connect to (as in SocialVPN), a group is formed, and each
user who belongs to the group is able to communicate with any other user. All nodes in the
GroupVPN are bound to the same virtual private address space, and IPv4 addresses are not
translated. This is useful in applications such as virtual clusters, LAN-style gaming, etc, where it
is expected that all nodes joining the network are able to communicate with each other.

In GroupVPN, there are two approaches to the creation of TinCan links: proactive, and
on-demand. In proactive mode, a GroupVPN node creates TinCan links to all online peers as

https://github.com/ipop-project/ipop-project.github.io/wiki/Controller-Framework

soon as their presence is detected. This allows for fast linking among nodes, but does not scale
to large networks (typically hundred or more nodes); thus, it is intended for small-scale groups.
In on-demand mode, a GroupVPN node only creates TinCan links to online peers when IP
packets are sent between nodes. Thus, on-demand mode only creates a link when there is
demand for communication; it also trims links after a configurable period without communication.
On-demand mode scales better, but incurs longer latencies (orders of seconds) to create links.

GroupVPN also allows operation in “switch mode”. In this mode, GroupVPN is bridged to a local
area network, and is capable of handling the capture/tunneling/forwarding of layer-2 Ethernet
frames. Switchmode GroupVPN may run on a router device (e.g. an 802.11 wireless router
patched with OpenWRT); this is useful when you want to have IPOP endpoints that do not run
the IPOP software locally (e.g. iphones, TVs, etc). Such a switchmode deployment can support
NAT and DHCP functionality, allowing it to be in many cases a drop-in replacement for a
residential wireless router that also provides connectivity to other GroupVPN routers. This mode
of operation is described in detail in the next subsection.

3.4 Advanced Features

1) Switchmode IPOP

This mode only works in GroupVPN IPOP. Bridges are widely used as network solution for
cloud computing - for instance, when creating multiple virtual machines or O/S containers on a
single server using the OpenStack software, these virtual machines/containers are connected
by a Linux bridge. Attaching IPOP’s tap device to Linux bridge provides a capability that allows
an IPOP GroupVPN where multiple virtual network interfaces share the same Linux bridge. This
feature can be used in various cloud network environments and lead to more efficient
deployments where the overhead of packet handling/forwarding in IPOP is avoided for
communication that takes place among VMs/containers within a single server. For instance,
IPOP can run on a physical cloud node providing IPOP network connectivity to multiple VM
instances in cluster. Moreover, many virtual machine systems such as VMware or VirtualBox
uses tap devices of which can be attached to Linux bridge alongside with IPOP. Multiple VM
instances can access IPOP network without consuming any computing resources.

We named this mode of operation “switchmode”, as IPOP runs as a virtual layer-2 switch for the
ARP protocol, and provide attached virtual interfaces a gateway to access remote peers.
Conventional IPOP tap take up partial address range in O/S. In switchmode, IPOP can share
this address range with other virtual network interfaces or virtual bridges such as Linux bridge.

VM1 VM 2 VM 3 VM 4

Y) CR Y T ()
| e i e
Crssiin) G)
Host;\ﬂachine Hos_t':Machine

.................. (- PhysiaNic)

Figure 3.7. IPOP Switchmode

As depicted in Figure 3.7, the IPOP tap device can be attached to virtual bridges, such as Linux
bridge. VM1 can send IP packets to VM2, and vice versa, without requiring IPOP to process
these packets (hence, without network virtualization overhead) as these are connected through
Virtual Bridges. IPOP also allows VM1 or VM2 to send IP packets to VM3 and VM4. These
packets are captured by “IPOP tap” and sent over IPOP overlay network and destined to VM3
or VM4. Thus, virtually, VM1, VM2, VM3 and VM4 are in the same “flat” virtual network subnet -
without NAT or firewall - as if they were all connected through the same switch device as
depicted in Figure 3.8.

VM 1 VM 2 VM 3 VM 4

Figure 3.8. Switchmode from the perspective of virtual machines VM1-VM4

Switchmode is implemented by emulating local ARP request/reply message as a remote call.
For example, a local ARP request/reply message is re-formatted in JSON, sent to an IPOP
remote controller through a remote call; then it notifies remote peers with the information of
which IP address belongs to which IPOP peers. These IPOP peers (and associated IP address
mappings) are kept in every IPOP peer.

One benefit of IPOP switchmode over running IPOP in an setup such as multiple VMs or
multiple containers in a host, is that the VM do not have overhead of running IPOP inside as its
process. In the future, IPOP can be incorporated in openflow controllers, with the possibility of
moving the overhead of processing packet translation to physical network devices from the host
machine processes, which can further reduce the overhead of processing packets.

2) Structured P2P GroupVPN

As of Release 16.01, the IPOP controller for GroupVPN implements a structured P2P topology
based on the Chord protocol. The BaseTopologyManager module of the GroupVPN controller
implements the policies that enable the creation/management of TinCan links that serve the
following three roles: Successor links establish a ring topology, where nodes are connected to
successors based on increasing order of their unique IDs (UIDs); Chord links “cut across” the
ring, in steps in the identifier space that grow according to a logarithm function; and On-demand
links are created dynamically between peers based on the monitoring of traffic between
endpoints.

@ = |POP Network Visualizer

ipvd 172.31.0.0 20 nodes
nodes 20

SUCCess0rs 60
chords
n-demand

Figure 3.9: snapshot of GroupVPN structured P2P overlay topology with 20 nodes. Links in
yellow, white, and orange are successor, Chord, and on-demand, respectively. The labels at
each node are the last byte of the virtual IP address - not the unique UID; nodes are ordered by
increasing UID. In this example, IPOP is configured with both number of successor and Chord
links as 3; node 172.31.0.2 pings node 172.31.0.10 and an on-demand link is established.

The controller uses the XMPP protocol to discover nodes to which successor links need to be
established, as well as nodes to which Chord links need to be established. The controller
manages these links dynamically over time, adapting to changes in the network (node
joins/leaves) to maintain the structured topology. The numbers of successor and Chord links
can be configured through the IPOP configuration file. The timeouts used by the controller to
check on the status of successor and Chord links are also set through configuration.

On-demand link creation is triggered by traffic monitored between endpoints - when node A
sends an IP packet to node B, it triggers node A to initiate a connection request to node B. This
connection request is sent through the XMPP controller, and triggers the creation of a P2P link
between A and B. The number of on-demand links is also configurable through the IPOP
configuration time. On-demand links are trimmed after a timeout, if they are inactive - e.g. when
virtual network traffic between A and B falls below a minimum threshold for a period of time. The
threshold and timeouts are also configurable through the IPOP configuration file.

When there are no on-demand links available, the GroupVPN controller performs overlay
network routing to forward traffic between endpoints. Overlay network routing in this case
follows a greedy-routing, identifier-based protocol, using successor and/or Chord links to
forward messages through intermediate peers.

The controller also takes as configuration the maximum number of inbound links. Since node
creation requires both endpoints to agree on whether to create a link, it is important to place a
cap on the number of inbound links, such that a node can deny the creation of a link requested
by another peer.

With this design, it is possible for a user to configure the GroupVPN controller to cater to
different target environments. For instance, an overlay network with a small number of nodes
may proactively create an all-to-all topology by configuring the number of successors (and the
number of inbound links) to be equal to the target number of nodes. An overlay network with a
large number of nodes N can be designed to scale and avoid the O(N*2) cost of all-to-all links,
by setting the number of successors to be small but sufficient to maintain a fault-tolerant ring
topology (e.g. 4), O(logN) number of Chord links, a constant number of on-demand links based
on expected dynamic communication patterns (e.g. 10 if nodes are expected to actively
communicate with 10 peers at any point in time), and number of inbound links sufficient to
accommodate successor, Chord, and on-demand links. Note that each node is configured
independently - a node that is a server expected to receive requests from a large number of
clients, and with more resources available to accommodate overlay links, for instance, may be
configured with a larger maximum number of on-demand and inbound links.

3) External services and protocols

IPOP relies on a series of open standards and technologies for various aspects of its
functionality. First, it uses the Extensible Message and Presence Protocol (XMPP) as the

http://xmpp.org/

trusted, out-of-band medium for bootstrapping secure connections. XMPP also enables peer
discovery and notification in the network. To ensure P2P communication between nodes behind
NATS, the libjingle library uses the Simple Traversal Utilities for NATs (STUN) protocol. This
service allows peers to discover their public IP and port from behind NATs. We call this a
reflection service. Finally, for nodes behind symmetric NATs with routers that cannot be
traversed with STUN, the libjingle library leverages the Traversal Using Relays around NATs
(TURN) protocol. A TURN relay with a public IP address serves as a middleman routing IP
packets between two nodes behind symmetric, untraversable NATs. Our use of open standards
ensure a modular design where we can reuse existing mature tools available on the Internet.

A. XMPP (Peer discovery/notification)

Before a P2P connection can be established between two nodes, the nodes have to discover
each other and exchange information such as their current public IP addresses and ports and
X.509 fingerprints. This exchange has to occur through a trusted medium that allows for generic
messaging. XMPP serves exactly that purpose and it is widely available as an open standard
with many open-source implementations. By using XMPP’s presence and query stanzas,
IPOP-Tincan is able to send messages through XMPP services without any additional features
or requirements. For our deployments, we tested our design on Google XMPP servers,
Jabber.org servers, and even our own XMPP server through the use of ejabberd deployments
on Amazon EC2. We have provided instructions on how to independently deploy an ejabberd
XMPP service on our wiki.

B. STUN (Reflection/NAT traversal)

Most users connect to the Internet from behind a NAT device, which enables multiple machines
to share a single IP address. As a result, most applications are not aware of their public IP
address and port. Since a P2P connection is a direct IP connection between two devices, peers
need to be aware of each others public IP addresses and ports in order to successfully create
IPOP-Tincan connections. A STUN server enables such a capability. The ejabberd XMPP
server has a built-in STUN server that allows peers to discover their public IP and port.
Therefore, the same instructions about deploying a ejabberd XMPP service will also provide a
STUN service by default. Google also runs a series of STUN servers for their XMPP and
WebRTC protocol. A list can be found here.

C. TURN (Relay/NAT traversal)

According to Google statistics, about 8% of nodes cannot create direct P2P connections to each
other due to symmetric NATS; in such extreme conditions, traffic relaying is the only option. This
is accomplished through the TURN service. The job of a TURN server basically involves taking
data from one peer and forwarding it to another. Since the TURN server has a publicly
reachable IP address, nodes behind symmetric NATs can naturally connect to it. Using this
middleman, two nodes behind symmetric NATs can communicate. Deploying a TURN server
must be done with care because that machine will essentially be routing IP packets between
two nodes therefore proper limits and restrictions have to be set in order to ensure the nodes
does not become a network bottleneck. We provide the details of a TURN deployment on our
wiki.

http://tools.ietf.org/search/rfc5389
http://tools.ietf.org/search/rfc5766
http://www.ejabberd.im/
https://github.com/ipop-project/documentation/wiki/Installing-XMPP-server
https://github.com/ipop-project/documentation/wiki/Installing-XMPP-server
https://gist.github.com/zziuni/3741933
https://developers.google.com/talk/libjingle/important_concepts
https://github.com/ipop-project/documentation/wiki/Installing-TURN-server

4. Controller/TinCan API

IPOP-Tincan provides a JSON-RPC API over UDP which enables developers to extend IPOP’s
functionality without making changes to the link management/forwarding core. These API calls
do not return results; however, some of them trigger a notification to get sent to the controller
(e.g. “get_state” causes IPOP-Tincan to send update notifications to the controller). These
function calls and notifications are described below.

[Function Calls]

4.1 register_svc

This function is designed to allow IPOP-Tincan to register to a backend service which will be
used to discover social peers and bootstrap encrypted P2P connections. We currently only
support XMPP service, hence this is basically the XMPP username and password. Future
versions may extend this API to support services other than XMPP, and authentication
mechanisms to XMPP other than username/password.

Parameter Type Description

username string the username used to login to the XMPP service (e.g.
username@gmail.com)

password string the password used to login to the XMPP service

host string the host name or IP address of the XMPP server (e.g.
talk.google.com)

4.2 set_local_ip

This call configures the VNIC and set the UID of the local peer. This call is important and has to
be done first because it also triggers the creation of a X.509 certificate and configures the virtual
NIC and operating system for packet flow.

Parameter Type Description

uid string the unique identifier for the local peer (e.g. hexdigest of
the sha1 hash). The uid, encoded as a hexadecimal
string, is 40 Bytes long.

ip4 string the IPv4 address for the ipop tap virtual NIC

ip6 string the IPv6 address for the ipop tap virtual NIC

ip4_mask integer the prefix length, in bits, for the network mask in the IPv4
address (e.g. 16 means a.b.c.d/16 allowing for a network
of size 2"16)

ip6_mask integer the prefix length, in bits, for the network mask in the IPv6
address. This is usually set to 64

subnet_mask integer the prefix length for the network mask in the IPv4 address
of the local router. This parameter is relevant for router
mode - in router mode, an IPOP-Tincan node routes
packets for more than one IP address; this parameter
specifies the subnet it should route for. If not in router
mode, you must set this parameter to 32 (a netmask of 32
gives a network size of 1, i.e. IPOP-TinCan only routes for
its local address).

4.3 get_state

This is a very important call because it allows developers to query the state of IPOP-TinCan. In
return, IPOP-TinCan replies (through the use of notifications) with the state of the local peer and
each remote peer. The first notification sent to the controller is the “local_state” (see section
4.10) which tells the controller state information about the local user - such as UID and IPv4
address. Afterwards, a separate “peer_state” notification (see section 4.11) is sent to the
controller for each remote peer containing information such as IPv4/IPv6 address and online
status. The controller can provide the UID of a particular peer; in that case, only the “peer_state
of the specified user is returned to the controller. If no uid is provided, then the “peer_state” of
every remote peer is returned to the controller.

Parameter Type Description

uid string the unique identifier of the remote peer that we want state
information about. If this is an empty string, then all state is
returned.

4.4 create_link

This call creates P2P TinCan link with a peer, with encryption if so specified. It requires that the
controller provides the 40-byte hexadecimal encoded UID of the remote peer, and the peer’s
X.509 fingerprint, along with optional STUN/TURN credentials. The X.509 fingerprint is
generated by IPOP-TinCan once the “set_local_ip’ call is made. The ‘get_state’ call returns the
X509 fingerprint as part of the local_state notification.

Parameter Type Description

overlay_id

uid

fpr

stun

turn

turn_user

turn_pass

cas

sec

integer

string

string

string

string

string

string

string

boolean

4.5 set_remote_ip
This call builds the forwarding table for IPOP-TinCan. It maps IP addresses to remote peer
UIDs. The aforementioned “create_link” function causes IPOP-TinCan to create a P2P
connection associated with the remote peer’s UID. This function thus allows IPOP-TinCan to
know which P2P connection to forward the IP packets.

Parameter

Type

IPOP-TinCan will support multiple overlays in the future (e.g.
XMPP, Gnunet) so we need an ID for each overlay. Currently,
we only support two hardcoded IDs (0 for controller, 1 for
XMPP service). For now, always set this to 1.

UID of the remote peer to connect to. Every IPOP node has a
unique identifier that is determined by the controller. This
identifier has to be a 40-byte long hexadecimal string. In the
GroupVPN controller we use the sha1 hash of the IPv4
address; in the SocialVPN controller, we use a random
identifier.

this is the X.509 fingerprint (hash of X.509 certificate) of the
remote peer. This is obtained from the "get_state™ api call
described below. IPOP-TinCan generates an X.509 certificate
once the “set local_ip’ call is made.

this parameter specifies the STUN server that will be used for

this connection (e.g. stun.google.com:19302). You can provide
an empty string for this parameter, but the connection will only
succeed if one of the two peers are not behind a NAT.

this parameter specifies the TURN server that will be used for
this connection (e.g. ip-of-turn-server:port). This can be an
empty string and is only required if both peers are behind
symmetric NATSs.

the username for accessing the TURN server, can be empty
string.

the password for accessing the TURN server, can be empty
string.

a specifically formatted string that contain a list of IP addresses
and connection credentials necessary for bootstrapping an ICE
connection. This is generated by IPOP-TinCan.

this parameter specifies whether or not the connection should
be encrypted.

Description

uid string the unique identifier of the remote peer

ip4 string the IPv4 address that the remote peer is mapped to. The
address needs to fall within the subnet of the VNIC defined in
the create_link call.

ip6 string the IPv6 address that the remote peer is mapped to. It should
fall within the subnet of the ipop virtual NIC defined in the
create_link call.

4.6 trim_link

This trim call provides a mechanism to force the removal of TinCan P2P links from a node. This
occurs regardless of whether peers are online or offline. Link trimming is important in
resource-constrained devices, and to create scalable routing overlays.

Parameter Type Description

uid string the unique identifier of the remote peer specifying which P2P
connection to trim.

4.7 set_cb_endpoint

IPOP-Tincan currently notifies the controller of two main events: 1) a connection request/reply
and 2) a link state change (i.e from online to offline). This call registers the endpoint at the
controller that IPOP-Tincan sends the notifications to.

Parameter Type Description

ip string the IP address of the controller

port integer the port number of the controller
4.8 send_msg

This call allows the controller to send an arbitrary message to another peer via the overlay (i.e.
XMPP service) specified by the overlay_id. This serves as a secondary out-of-band channel to
bootstrap P2P connections. Note: this call is not intended to be used for the datapath flow of IP
packets between nodes - it is a control path call.

Parameter Type Description

overlay_id integer this parameter specifies which overlay should be used to send
the message. This should be set to 1 because we only support
send_msg over the XMPP overlay.

uid string the unique identifier of the remote peer that will receive the
message

4.9 set_logging
By default, IPOP-Tincan prints various debugging messages to stdout. This call allows
developers to select the level of logging.

Parameter Type Description
logging integer sets the logging severity, 0 = no logging, 1 = error logging, 2 =
info logging

4.10 set_switchmode

This mode configures whether IPOP should handle ARP messages picked from the tap
interface to the controller or not. If set to enabled (1), ARP request/response messages are
forwarded to controllers, and the controller broadcasts this message as JSON formatted RPC to
all the other IPOP peers looking for given IP address. If found, remote ARP reply message is
received and local ARP reply message is generated to solicit this IP address. In the operating
system’s perspective, this IP address is associated with IPOP tap device. Then, IP packets can
be transferred through IPOP network as if they were in the same network layer. As a result,
when IPOP tap device is attached to a linux bridge, it works as a gateway toward IPOP network
for the all the network interfaces that attached to the linux bridge. If this mode is disabled, IPOP
discards ARP messages. It is disabled by default.

Parameter Type Description

switchmode bool Switchmode is enabled by setting this parameter as 1.

4.11 set_translation

This function allows the controller to enable/disable TinCan’s IPv4 address translation feature,
which is necessary for SocialVPN. The SocialVPN controller sets this value to 1, while the
GroupVPN controller set this value to 0. In SocialVPN, IPv4 addresses are not globally unique
and translation is necessary to map all friends’ IPv4 addresses to a local address.

Parameter Type Description

translation int If set to 0, then you are running on GroupVPN mode, if set to
1 then you are running in SocialVPN mode

4.12 set_trimpolicy

If it is enabled, relay connections are removed among connection candidates, if there are STUN
connections available.

Parameter Type Description

trim_enabled bool If set to true, relay connections are trimmed once a STUN
connection candidate is available

4.13 echo_request

This function call works as a ping message allowing an external process to monitor whether
TinCan is responsive or not. Once TinCan receives this message, it sends back “echo_reply”
message to the controller.

Parameter Type Description
msg string The message contents send back to controller in “echo_reply”
message.

4.14 echo_reply

This message is complementary to “echo_request”. Upon the receipt of “echo_request”
message, the expected behavior for both the TinCan and controller is to reply back with
“echo_reply” message echoing the same “msg”.

Parameter Type Description

msg string The “msg” contents has the exactly same payload with the
“‘echo_request’” msg.

4.15 set_network_ignore_list

As a default, IPOP tries to create STUN connection by using all available network interfaces.
This can be inefficient and also produce much verbose logging messages by trying to create
connection through network interfaces without public internet access. This call allows the
controller to identify network interfaces that should be ignored.

Parameter Type Description
network_igno string List up network interfaces to be ignored in json format. i.e.,
re_list “network_ignore_list” : [eth1, wlanQ]

[Notifications]

Notifications are sent by IPOP-TinCan and received by the controller in several events of
interest.

4.16 local_state

This notification is sent to the controller as a result of the get_state function call. It contains
information about the local node.

Parameter Type Description

type string set to local_state to indicate that it contains information about
the local node

_uid string the UID of the local node

_ip4 string the IPv4 address of the local node

_ip6 string the IPv6 address of the local node

_fpr string the X.509 certificate fingerprint of the local node

4.17 peer_state

This notification is sent to the controller as a result of the get_state function call. It contains
information about a single peer node.

Parameter Type Description

type string set to peer_state to indicate that it contains information about
the peer node

uid string the UID of the peer node

ip4 string the IPv4 address of the peer node

ip6 string the IPv6 address of the peer node

fpr string the X.509 certificate fingerprint of the peer node

status string set to either online or offline. Online is defined as the TinCan

P2P link is active - i.e. keep-alive messages sent over the
TinCan link have been acknowledged by the destination. If no
link has been created, or if keep-alive messages have not
been received within a period of time managed by libjingle (15
seconds by default), the status is offline.

security string set to either none or dtls. It indicates whether the P2P
connection is encrypted or not

stats string This attribute only available in GroupVPN. It lists connection
candidates and traffic records. Candidates are in array form
and attributes of candidates are listed below. Attributes are
associative array form in JSON format.

xmpp_time

4.18 con_stat

int

e best _conn: True, if this candidate is best connection.
local_addr: reflective or relay transport address of
candidates. In most cases, it is the public address of
NAT with ports that the IPOP is binding to.
local_type: Local IPOP node NAT traversal type
new_conn: True, if it is new connection

readable: True, if this connection is readable
recv_bytes second: Byte received for last one seconds
recv_total_bytes: Total byte received since the
connection is created

e rem_addr: reflective or relay transport address of
candidates remote peer. It is usually the public
transport address of NAT that the remote peer is
binding to

rem_type: remote peer NAT traversal type

rtt: Round trip time

sent_bytes second: Byte sent for last one seconds
sent_total_bytes: Total byte sent since the connection
is created

timeout: True, if this binding timed out.

e writable: True if writable

the number of seconds since the local node receives an XMPP
presence message from the remote peer. Presence messages
serve as an indicator that the node is ready to accept TinCan
connections. The controller can use the XMPP time to
determine when to trigger a connection request to a node

This notification is sent to the controller when a TinCan P2P link changes state either from

unknown to online or offline.

Parameter

type

uid

data

4.19 con_req

Type

string

string

string

Description

set to con_stat to indicate that it contains connection status
information.

the UID of the peer node

set to the current status: online, offline, or unknown. Unknown
means the connection has just been initialized

This notification is sent by a controller through the XMPP overlay when a node wants to initiate
a TinCan connection with a remote peer. The controller determines the policy for connection

creation. This connection request should trigger a connection respond on the receiving
controller if it agrees to create a connection with the requestor.

Parameter Type

type string
uid string
data string

4,20 con_resp

Description
set to “con_req” to indicate that it is a connection request
the UID of the peer node

contains the X.509 fingerprint of the peer node and optionally
followed by ICE information containing public IP address,
credentials, and connection type

This notification is sent back through the XMPP server as a reply to the connection request
event described above. The response message is almost identical to the connection request
except for the message type. Once a connection response is received, then nodes can start
creating their TinCan connections.

Parameter Type

type string
uid string
data string

Description

set to con_resp to indicate that it is a connection response

the UID of the peer node

contains the X.509 fingerprint of the peer node and followed by
ICE information containing public IP address, credentials, and
connection type

